
SEApp: Bringing Mandatory
Access Control to Android Apps

Speaker: Matthew Rossi

About me

● PhD student at University of Bergamo

● Research on computer security, mostly

integrating security features in mobile & cloud

systems

● I love to solve problems and engage with

projects that require me to learn new things

● I also love sports, traveling, and hiking

Agenda

● How Android isolates applications

● Limitations

● How attackers could exploit these limitations

● SEApp

● Latest evolutions

Android platform security model

Android’s security measures:

● defense in depth – an approach that does not immediately fail when a

single assumption is violated or a single implementation bug is found

● safe by design/default – the default use of an operating system

component or service should always protect security and privacy

Permissions
By default, an Android application can only access a limited range of system

resources

To make use of the protected APIs, an application must define the list of

Permissions it needs in its manifest

Kernel-level isolation and containment

Android takes advantage of Linux access control mechanisms to setup a

kernel-level Application sandbox which:

● isolates apps from each other

● protects apps and the system from malicious apps

Since the Application sandbox is in the kernel, this extends to both native

code and OS applications

Unix permissions (1 of 2)

Android enforces security between apps and the system at the

process-level through UNIX-style user separation of processes and file

permissions

Each app is assigned to a unique user and group IDs

Unix permissions (2 of 2)

ps -Ao user,group,name

ls -l /data/data

SELinux (1 of 2)

SELinux is a mandatory access control system for the Linux operating

system

Android takes advantage of SELinux to greatly limit the potential damage

of a compromised device

SELinux (2 of 2)

ps -AZo name

ls -lZ /data/data

Evolution

Problem statement

Android focuses on isolating applications from each other

There are no means to isolate components internal to the app, every

component:

● has complete access to the internal storage
● holds the app privileges

Use case: file sharing

Every component of an application have the same access to internal
storage, so apps may be one vulnerability away from leaking user private

data

Many applications store both

confidential data and share

contents with other apps

Applications may leak
private data

Use case: media

The media library has the same access to internal storage and the same
permissions over the system services as other app components

Most applications people interact

with deal with media files (e.g.,

social networks)

Many applications use

media libraries

Use case: advertising

The components of the ad-library have the same access to internal storage

and the same permissions over the system services as other app

components

In the Android ecosystem, most

applications have an ad-based

revenue model

Most application import

3rd-party libraries to

display ads

Solution: Security-Enhanced App

Improve the security of applications with the introduction of

intra-application compartmentalization

Android 9+ SEApp

Idea

libmedia.so

Activity 1 Activity 3

Activity 2

Service B

Service A

Android app

libmedia.so

Activity 1 Activity 3

:core :advertisement

Activity 2

Service B

:media

Service A

SEApp

Location
service

Camera
service

Network
servicemedia/

ads_cache/
confidential/

System servicesInternal app storage

libmedia.so

Location
service

Camera
service

Network
servicemedia/

ads_cache/
confidential/

System servicesInternal app storage

Changes to the Android OS (1 of 2)

Apps provide a fine-grained policy module to control the permissions

granted to processes

A compiler-based approach prohibits the installation of policy modules that

may harm the system or other apps

POLICY
MODULE

POLICY
MODULE

SYSTEM
POLICY

SYSTEM
POLICY

SYSTEM
POLICY

POLICY
MODULE ...

010101001010
101001001011
010011011011
011110111000
011110101111
101000101000

All policy fragments end up in the same

monolithic binary policy

Changes to the Android OS (2 of 2)

Several changes to:

● boot sequence

● app installation procedure
● runtime services critical to the app lifecycle (e.g., Zygote)

Boot-time support

Since the introduction of Project Treble:

● policy segment updates → on-device compilation

Changes to the second stage of boot:

● mount the /data partition (where policy modules are stored) early

● run a new built-in function to build and reload the policy

The policy is not bypassable, since the modules are loaded before any

application starts

Install-time support

Runtime support: processes

Runtime support: files

Experiments

● limited app installation overhead
● no deterioration of the start-up time of components running inside

different processes
● running processes provide warm start of their components

● unaltered communication overhead between components belonging to
different processes

● slow down of file creation due to the use of a new system service to
update security contexts of files

Worst case ~4s

Activity ~125 ms→~15 ms Service ~105 ms→~2.5 ms

IPC ~200 µs

Security context update ~450 µs

Recap

● by mapping security contexts to activities and services, developers can

limit the impact of a vulnerability on both the app and the end user

● our proposal is consistent with the evolution of Android and the

desire of its designers to let app developers have access to an extensive

and flexible collection of security tools

● experimental evaluation shows that the overhead introduced by our

proposal is limited and compatible with the additional security
guarantees

Future evolutions in app isolation (1 of 2)

In Android 13, we plan to add a new platform capability that allows

third-party SDKs to run in a dedicated runtime environment called the

SDK Runtime. The SDK Runtime provides the following stronger

safeguards and guarantees around user data collection and sharing:

● A modified execution environment

● Well-defined permissions and data access rights for SDKs

source: developer.android.com

https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime

Future evolutions in app isolation (2 of 2)

source: developer.android.com

Before After

https://developer.android.com/design-for-safety/privacy-sandbox/sdk-runtime

Thank you! Any questions?

