
Cage4Deno: using Landlock and eBPF LSM
to sandbox Deno subprocesses

 Gianluca Oldani: gianluca.oldani@unibg.it
Marco Abbadini: marco.abbadini@unibg.it
Michele Beretta: michele.beretta@unibg.it

https://seclab.unibg.it/
mailto:gianluca.oldani@unibg.it
mailto:marco.abbadini@unibg.it
mailto:michele.beretta@unibg.it

Contents of the presentation

● What is Landlock LSM
● What is eBPF
● A quick tour in the world of JavaScript CVEs targeting runtimes (e.g., Node)
● What is Deno, and how it addresses the previous tour
● What remains uncovered by Deno
● How we combined all of them to create Cage4Deno and a tour of it

Landlock

Landlock – what is it

● https://landlock.io/
● Security feature available since Linux 5.13

○ Uses the Linux Security Modules (LSM) framework
○ Provides scoped access control (i.e., sandboxing)
○ Any process (even unprivileged) can restrict itself

● Must be configured in order to be used
○ When building the kernel with CONFIG_SECURITY_LANDLOCK=y
○ At boot setting CONFIG_LSM

● Enabled by default in some distros
○ Archbtw

○ Debian Sid
○ Ubuntu (from 20.04)
○ WSL2

https://landlock.io/

● Why would I ever want to restrict my own code?
○ Even if your code is innocuous, it can become malicious during its lifetime
○ Bugs can be exploited (see the previous CVEs)
○ Your dependencies could be (or become) malicious
○ You don’t want your user to shoulder all security risks
○ You know what you need: restricting access only to that can improve security

● Why Landlock then?
○ It’s in the kernel (according to the kernel docs, using user space process to enforce restriction

on kernel resources could lead to race condition or inconsistencies)
○ Ease of use, declarative API (C, Rust, Go, etc)
○ Actively developed

Landlock – reasons

Landlock – how does it work

● Uses the concept of rules
○ Describe an action on an object
○ An object is a file hierarchy (currently)

● Rules can be aggregated in a ruleset
● Rulesets restrict the thread enforcing it, and its future children
● Has some limitations

○ You cannot define exceptions
○ A thread cannot modify its own topology (via mount)
○ Special file systems (e.g., pipe, socket, nsfs) cannot be explicitly restricted
○ A maximum of 16 layers of stacked rulesets

● Must use the landlock crate
● Start by defining the ruleset

○ Which ABI is supported
○ Which permissions to grant

● Everything is possible until the
restrict_self

● Afterwards, Landlock is in effect
● Example code available at

github.com/unibg-seclab/nohat-demos

Landlock – little example (in Rust)

https://github.com/unibg-seclab/nohat-demos

Landlock – possible applications (WASM)

● WASM can be:
○ run directly on the system with runtimes (e.g., Wasmtime)
○ interpreted inside arbitrary programs (with libraries)

● Current WASM runtimes do not have a lot of fine tuning when it comes to
permissions

○ Directory granularity
○ Access is always everything

Landlock – possible applications (WASM)

● Landlock could be used
○ Already available in most recent distros
○ No need to implement a custom access control layer

● Simple API, either already available
○ Rust https://lib.rs/crates/landlock
○ C (kernel) https://www.kernel.org/doc/html//v5.18/userspace-api/landlock.html

● Or in development
○ Haskell https://hackage.haskell.org/package/landlock
○ Go https://blog.gnoack.org/post/go-landlock-talk/

https://lib.rs/crates/landlock
https://www.kernel.org/doc/html//v5.18/userspace-api/landlock.html
https://hackage.haskell.org/package/landlock
https://blog.gnoack.org/post/go-landlock-talk/

Landlock – possible applications (WASM)

eBPF

eBPF – extended Berkeley Packet Filter

● Technology that allows execution of user programs inside the kernel
● eBPF programs:

○ are loaded at runtime
○ extend kernel capabilities

● Pros
○ No change needed to the kernel source code
○ No need to load new kernel modules

● It is possible to attach eBPF programs to LSM hooks and enforce access
control

eBPF – extended Berkeley Packet Filter

● eBPF programs are event-driven
○ Run when a certain hook point is passed
○ Code is verified
○ And then JIT-compiled

● eBPF uses maps to persist data
between invocations

● Common use cases
○ Networking
○ Observability of programs

● Why usually in the kernel?
○ Because of its privileges
○ And it’s hard to evolve

JavaScript for backend applications

General problem

● JavaScript is born as a language meant to be run in browsers
● Due to this use scenario, the language initially had several limitations due to

security reasons
● Among these limitations, JavaScript was not able to:

○ Access the file system
○ Open connections to arbitrary hosts
○ Spawn subprocesses

● But everything described until now changed with the creation of JavaScript
runtimes

Introducing Node.js

● Created by Ryan Dahl in 2009
● Allows the usage of JavaScript code for the backend of web application
● In general, JavaScript now is usable outside of the browser, with full access to

the underlying file system
● While JavaScript can be considered a “good security sandbox” concerning

memory management…
● it inherits the problems of a dynamic languages

The classics: CVE-2022-25860

● RCE in the simple-git npm package, a simple wrapper around git
● Cause of the CVE: input sanitization is a hard task and programmers often

get it wrong (this CVE is a follow-up to CVE-2022-25912)
● If an attacker is able to manipulate the input to the command, they can

execute arbitrary commands on the victim machine

Bad default configuration: CVE-2021-23639

Bad default configuration: CVE-2021-23639

● RCE in the md-to-pdf npm package
● This package depends upon another package gray-matter
● By default, the gray-matter library enables the rendering of JavaScript code

provided as an input
● md-to-pdf should only process markdown files
● If an attacker is able to manipulate the input to the command, they can

execute arbitrary commands on the victim machine

Common ground between the CVEs

● Every exposed CVE suppose that the attacker is able to manipulate the input
string given as input

● This, in a lot of cases is a strong assumption but…
● In Node there is another very common category of CVEs that can ease the

attacker job

Introducing prototype pollution: CVE-2020-36632

● Prototype pollution is a JavaScript vulnerability that enables an attacker to
add arbitrary properties to global object prototypes

● These properties may then be inherited by user-defined objects
● In this way an attacker is able to manipulate the behaviour of code otherwise

supposed as safe
● The mentioned CVE is relative to the flat npm package and can be used to

execute arbitrary commands on the victim machine

Introducing prototype pollution: CVE-2020-36632

What can be done?

● In all the exposed cases, JavaScript code is not meant to execute any kind of
subprocess

● There already exists methods to execute JavaScript with restricted privileges
in the host system

● Existing solution:
○ nvm module vm2
○ JavaScript reamls https://github.com/tc39/proposal-shadowrealm
○ Deno

https://github.com/tc39/proposal-shadowrealm

What is Deno

● Deno is a popular JavaScript runtime made by the same creator of Node.js,
Ryan Dahl

● Several motivations are explained in his talk:
10 Things I Regret About Node.js
https://www.youtube.com/watch?v=M3BM9TB-8yA

● One of these points was security

https://www.youtube.com/watch?v=M3BM9TB-8yA

Deno is “secure by default”

● Deno claims to be secure by default
● This is due to the fact that it implements a permission system that does not allow

JavaScript code to access the underlying OS unless specified otherwise by the user
● This means that by default, JavaScript code has no access to:

○ environment variables
○ system information
○ high resolution time measurements
○ network access
○ dynamic library loading
○ read/write access to the file system
○ spawn of subprocesses

● In addition to this, several measure against prototype pollution are in place by
default on every JavaScript object

So… everything is ok right?

● What about programs that must use subprocesses?
● What about programs that must use payloads that are not part of JavaScript

code? (e.g., images, videos)

Cage4Deno

Cage4Deno objectives

● Compatibility with existing security mechanisms
● Ease of use
● Fine-grained access control
● Effective in mitigating even recent vulnerabilities
● Low runtime overhead

Current workflow of Deno

Cage4Deno workflow

eBPF programs employed in Cage4Deno

Access policy example

Sample of mitigated CVEs

Performance overhead on non-malicious use

Performance overhead on cat varying ruleset size

References

1. Cage4Deno: A Fine-Grained Sandbox for Deno Subprocesses, Conference
Paper

2. Enhancing the security of WebAssembly runtimes using Linux Security
Modules, Poster

3. Check our git repository: https://github.com/unibg-seclab/cage4deno

https://github.com/unibg-seclab/cage4deno

Thank you!

